Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression

نویسندگان

  • Datong Liu
  • Jingyue Pang
  • Jianbao Zhou
  • Yu Peng
  • Michael G. Pecht
چکیده

State of health (SOH) estimation plays a significant role in battery prognostics. It is used as a qualitative measure of the capability of a lithium-ion battery to store and deliver energy in a system. At present, many algorithms have been applied to perform prognostics for SOH estimation, especially data-driven prognostics algorithms supporting uncertainty representation and management. To describe the uncertainty in evaluation and prediction, we used the Gaussian Process Regression (GPR), a data-driven approach, to perform SOH prediction with mean and variance values as the uncertainty representation of SOH. Then, in order to realize multiple-step-ahead prognostics, we utilized an improved GPR method—combination Gaussian Process Functional Regression (GPFR)—to capture the actual trend of SOH, including global capacity degradation and local regeneration. Experimental results confirm that the proposed method can be effectively applied to lithium-ion battery monitoring and prognostics by quantitative comparison with the other GPR and GPFR models. 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error

Remaining useful life (RUL) prediction is central to the prognostics and health management (PHM) of lithium-ion batteries. This paper proposes a novel RUL prediction method for lithium-ion batteries based on the Wiener process with measurement error (WPME). First, we use the truncated normal distribution (TND) based modeling approach for the estimated degradation state and obtain an exact and c...

متن کامل

Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine

Prognostics is necessary to ensure the reliability and safety of lithium-ion batteries for hybrid electric vehicles or satellites. This process can be achieved by capacity estimation, which is a direct fading indicator for assessing the state of health of a battery. However, the capacity of a lithium-ion battery onboard is difficult to monitor. This paper presents a data-driven approach for onl...

متن کامل

A Rest Time-Based Prognostic Framework for State of Health Estimation of Lithium-Ion Batteries with Regeneration Phenomena

State of health (SOH) prognostics is significant for safe and reliable usage of lithium-ion batteries. To accurately predict regeneration phenomena and improve long-term prediction performance of battery SOH, this paper proposes a rest time-based prognostic framework (RTPF) in which the beginning time interval of two adjacent cycles is adopted to reflect the rest time. In this framework, SOH va...

متن کامل

Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model

Article history: Received 25 May 2015 Received in revised form 21 June 2015 Accepted 29 June 2015 Available online xxxx

متن کامل

Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery

Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2013